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I. Introduction

A workshop under the direction of Norbert Peters (Instituet fuer Allgemeine
Mechanik RWTH Aachen) has been called to focus on numerical methods that have 4
been developed to solve premixed flame problems with complex chemistry and
transport properties. The purpose of this workshop is to seek to:

(1) Establish the difficulties that result from non-equal diffusivities
of heat and matter and the consequences that these have upon the accuracy of
the solution;

(2) Compare different numerical schemes for two test problems; and

(3) Exchange ideas about work in progress. This workshop has been subti-
. tled "The Flat Flame Olympics," and was held 12-14 October, 1981 at the
4 University of Aachen. Proceedings of the entire workshop are to be published. la

This report covers the second test problem: the solution of the steady,
stoichiometric hydrogen-air flame with complex chemistry. We have named
it the Peters B problem. (The first problem, Peters A, is detailed in another
reportld), The kinetic scheme and boundary conditions at the cooled end are
- specified and the governing equations, boundary conditions at the burned end,
1 : the initial conditions, transport properties and heat capacities, and numerical
1 scheme were left to the choice of the authors.

This report then documents the choices made and presents material requested
for the workshop as well as other interesting findings.

II. The Flame Equations

The derivation of the conservation equations for a multicomponent reacting
ideal gas mixture can be found in several textsl¢-3. Those equations that
adequately describe a one-dimensional, laminar, premixed flame that propagates
in an unbounded medium are:

Overall continuity

Pe * (P, =03 ‘ 1)

1ay,te8 on Mumerical Fluid Mechanice, Vol. S, N. Peters and J. Wamats, Ed.,
Vieweg-Verlag, .

b, p. Coffee, "Flat Flame Olympics: Test Problem A," BRL Report to be published.
104ipechfelder, J.0., Curtiss, C.F., and Bird, R.B., Moleoular Theory of Gases
and_Liquids, 2nd Ed. (corrected with notes), Wiley, New York, 1964.

zBind, R.B., Stewart, W.S. and Lightfoot, E.N., Transport Phenomena, Wiley,
New York, 1960.

3Villiana, F.A., Combustion Theory, Addison-wWesley, Readi.ng, MA, 1965.
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Continuity of species
PNy + pu (V) = (Y, V) + RM k=1,2,..., N: )
and conservation of energy,

N N
pcth * pucpTx = OTJx - kf1 MM * Ear P (YY), )

where the variables are defined in “~he glossary. The effects of radiation,
viscosity, thermal diffusion and body forces have been neglected and since the
burning velocity is small compared to the local speed of sound, the pressure is
taken to be constant3-4. Our general thrust is the determinat1on of species
and temperature profiles and of burning velocities. The boundary conditions
are the following (t>0). For x = - w; T = T and Y k , k=1,2,..., N,

and for x = + »

= (Y,). =0 (k=1,2, ...}, ' 4)

k)x
In order to avoid solving Eq (1), a coordinate ¢ is introduced such that

TX

x rd L .
p(x,t) = [ p(x ,t)dx . (5)

°
Then wx =p and wt = -pu + mo(t),
where (pu)l x=0 " mo(t). With this coordinate change equations (2) and (3) become
( ] + mO(Yk)w = (kavk)w * RkMk /p (6)
and N
L

(M, + 3,(D),, = cp'lf (AT)), - (o) Ry /o, N

respectively. In practice convenient dimensionless forms of equations (6) and
(7) are solved.

The burning velocity, S , is defined as the velocity of the flame relative
to the fluid at rest, that 1% at "infinity." The value of S can be found
from the steady-state prof11es by performing a coordinate transformation such
that the flame appears stationary. In this new system all variables are inde-
pendent of time, specifically, (Yx)t = g, = 0. Then from Equation (1) we have
(pu)_ = 0 or pu = constant. Take any ong of the equations (2) and integrate
over the interval (a,b) to obtain:

ou [V, (b) - Y, ()] = S0 RMdx - oYV [D ®
hen o Bhdx - onYy g 10 o7 md - evy I o
TR (O R A O) B TEO N (O R AC) ®

4Frtatrum, R.M. and Weetenberg, A.A., Combustion Thcggu, Addieon-Wesley,
Reading, MA, 1965.
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In this coordinate system S, = -u(-=).
One could also take Eq. (3) and integrate it over (a,b) to find an expression
similar to Eqs. (8) and (9). Specifically, we have

1P g h dx + AT_ | b
aee) = - 23 ket MK x 'a (10)
p(-=) 0 ¢ dT
which for constant ¢_ reduces to
r® : dx +aT, | P
u(-=) = a k=1 Rk“khk x 'a 1
e e Y CO RN & A s . (11)
P''b a

For the transport method used below hk = cpk Tx = cpTx and the sum

Y.V, = 0.

N . . .
T hk(kaVk)x in Eq. (3) vanishes, since - Kk

k=1

b4

The boundary conditions of the unburnt mixture have been specified as:
T = 298.15K for a stoichiometric hydrogen-air mixture. Since the overall chemi-
cal equation can be written
+ N

2H2 + 0 = 2H,0 + N

2 2 2 2

and since air is composedd of 79% N, and 21% 02, we find the mole (mass)
fractions at the unburnt boundary to6 be: x02 = 0,1479 (0.2264), XH = (.2958
(0.0283) and XN = 0.5563 (0.7453). 2

2

The boundary conditions of the burnt mixture are

Tx = (Yk)x

The Adiabatic flame temp, T

=0 (k=1,2,... (12)
B’ is 2383°K as computed by the NASA-Lewis Code6.
To define the starting pfofiles we let *k and VR be the left and right

boundaries of the integral of integration. en define’
1’1 = ‘pb +0.24 (WR = ‘J’L)- (133)

5fhe compogition of dry air is by mole %: 78,084 N3, 20.946 03, 0.934 Ar,
0.033 CO2, 0.003 rare gases. See Matheson Gas Data Book, 5th Ed. by W. Braker
and A.L. Mossman, Matheson Gas Products, E. Rutherford, N.J. 1971, p. 9.

sGordbn, S. and MeBride, B.J., Computer Program for Calculatiom of Complex
Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected
Shocks and Chapman-Jouquet Detomations, NASA-SP-273, 1971, (1976 program
version). .

?Coffee, T.P. and Heimerl, J.M., BRL Technical Report ARBRL-TR-02212, Jan. 1980.
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and
Yiw?s VL2V

YW = M+ 0y - Y) sin G CaD?, v s v s (13c)
K ku B ku Z 9,0, P VIV Y,

T is defined similarly. The choice of the particular function that defines
the Yk and T between y; and Y2 is not important. We have used a straight line
with success, but defining a smooth function is slightly more efficient.

III. The Numerical Solution

A modification of the PDECOL package was used to solve this problems.
PDECOL, a rather general package for solving one-dimensional differential equ-
ations, employs the method of lines in finding a solution.

Spatial discretization is accomplished by finite element collocation
methods based on B-splines. The basic assumptiom is that the solution can be
written in the form :

NC .
v (i) -
Y, = i§1 € (t) B;(¥), k = 1,...,N (14a)
and N (W)
T= £ C (t) B, (¥), (14b)
i=1 N+1

where the basis functions B; (y), i=1,...,NC are B-splines and span the solu-
tion space for any fixed t to within a small error tolerance. The time-
dependent coefficients C, (i) are determined uniquely by requiring that the
preceding expansion satisfy Eqs. (6) and (7) exactly at (NC -2) interior
(collocation) points. The boundary conditions, Eq. (4), are also converted in-
to ordinary differential equations. If there is a null boundary condition, an
extra collocation point is added. The Bj are piecewise polynomials of order
KORD. The user supplies a set of NB breakpoints (i.e. a set of strictly in-
creasing locations where the polynomials are joined) and the value for NCC,
the number of continuity conditions to be applied at the breakpoints. From
this information PDECOL generates a set: NC = KORD(NB-1) - NCC(NB-2) basis
functions and collocation points. Since by definition a B-spline is zero
except over a small interval, at any collocation point no more than KORD of
the B-splines are nonzero. So the system of ODE's for the coefficients Ck(lJ
is not fully coupled.

This system is integrated in time by using a variant of the Gear integrator.
It is at this point in the solution that we have modified the PDECOL packages.'
Normally all the Yk's and T would be solved simultaneously. This procedure
would consume inordinate amounts of computer storage. Since we are interested

BbeTbe, T.P., BRL Memorandum Report to be published.:
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only in steady-state solutions, we have adapted the method of successive cal-
culation. At each time step this process considers each PDE in turn and values
for other dependent variables are taken from the most recent computation. In
the steady-state this procedure is justified because (Yp)y = Ty = O and the
system is in fact decoupled in time.

The code requires the selection of the following parameters. The thermal,
y-space and temporal normalization factors were taken to be 1000K, 5x10-5 gm cm-2
and 1x10-3 sec, respectively. Vo, the cold boundary location is taken to be
zero while Y5 the normalized "boundary at infinity” is taken to be 2.90.

The time integration is controlled by a user supplied error tolerance .
Single step error estimates divided by CMAXk(i) will be kept less than e in
the root-mean-square norm. In the present case ¢ was chosen as 3x10-5. In
PDECOL, CMAXk(i) is initially set to the maximum of |ck(i)| and 1.0, There-
after, CMAXy (i) is the largest value of lck(i)lseen so far, or the initial
CMAXk(i) if that is larger. This error criterion is not appropriate for flames.

In a flame, radical species with relatively small concentrations will
control the flame, and we want to compute these accurately. However, some
species concentrations at some locations will approach zero, and we do not
want to waste time computing a negligible concentration very accurately.

So we will use a semi-relative error control. CMAXg(i) will be chosen
as the maximum of ck (i) and a user supplied parameter SREC. So concentrations
less than SREC will be computed less accurately. Here we have used SREC = 10-6,

The major difficulty in efficiently solving the flame equations is choosing
an appropriate set of breakpoints. These must be close enough that spatial
errors do not destroy the solution yet not so dense that one's computer resources
are exceeded. The breakpoints should be densest in the flame front, where the
gradients are very steep.

This problem can be dealt with by working with my, the mass flux through
the origin. This can be iteratively modified to match the mass flux through
the flame. It can also be modified to move the flame front towards the center
of the interval of integration, if necessary. The details of this procedure
are discussed in Reference 7.

] So we may choose our breakpoints to be densest in the center of our
interval of integration, we have developed a procedure to generate this type
of breakpoint sequence.

; The user must supply NINT, the number of intervals (NB = NINT - 1), NCN,
: the number of intervals of equal length that will be the center of the

interval, and FC, the ratio between the longest intervals (on the boundaries)
integration.

The program generates a set of intervals whose lengths increase by a

i and the shortest intervals, Also let L be the total length of the interval of
3
!
t constant factor o, where

|

|

a = log~! (2(log FC)/(NINT - NCN)). (15a)
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The common length LC of the NCN center shortest intervals is

LC = L/(NCN + 20 (o (NINT-NCNM/2 1y, 41y, (15b)
Some experimentation is necessary to choose the proper values of the

above parameters. In the present case we have chosen NINT = 24, NCN = 6 and

FC = 6. Finally the order of the B-splines KORD is taken to be 4 and the

number of continuity conditions at the collocation points, NCC, is set equal

to 2.

The code was executed on the BRL CYBER 76 system: it required approxi- ’
mately 1220008 words small core memory and took about 100 seconds to run from
a restart file.

IV. Input Coefficients
Kinetics

The steady-state, stoichiometric, plane hydrogen-air flame defined by
Peters has the kinetic parameters given in Table 1. (k = BTR exp(C/T) in units
of cm, mol, s, K.} As a check on the operation of the code we employed
another kinetic network listed by Dixon-Lewis9. These parameters are given in
Table 2. We remind the reader that, at this time, Table 2 contains our best
understanding of the Hy/02/N2 system and that Table 1 is a1 simplified set for
the purposes of this exercise.

Thermodynamics

The enthalpy and heat capacity are functions of species and of temperature.
The JANAF values for the eight species H, OH, O, HOz, Hz, 02, H20 and Ny are
adequately described by the polynomial fits of Gordon and McBride®. These fits
take the form

5
HTO =R (a_+ L a Tn/n) (16a)
o n
n=1
and
> n-1
C =R I a T (16b)
P n=1 n

where the coefficients are listed in Table 3 The heat capacity and specific
heat at 2000K are listed in Table 4 and were requested for use at the workshop.

When the values from these polynomials are compared to the tabular
valuesl0-12  those for HO, agree to better than 3.6% while all the others agree
to better than 1%.

Dizon-Lewis, G., Philos. Trans. Roy. Soc. (London) 292, 45-99, 1979.
104NAF Thermochemical Tables, 2nd Ed. by D.R. Stull and H. Prophet, NSRDS-NB3?,
June 1971. v

JJChaae, M.W., Curnutt, J.L., Hu , A.J., Prophet, H., Syverud, A.N., and Walker,
L.C., J. Chem. Ref. Data 3, 311-480, 1974.

2 Chase, M.W., Curmutt, J.L., Prophet, H., McDonald, R.A., and Syverud, A.N., J.
Phys. Chem. Ref. Data, 4, 1-175,1975.
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10.

11.

*
L 2]
L2

Table 1.
Reaction
H2 + OH = Hzo +H
02 +H =0+ 0H
H2 + 0 =H+ OH

OH+OH = HZO +0
H+H+M = H2+M
OH + O+M = H02+M

02+H + M= HO2 + M

H02+H = OH + OH

HO2 + H= H2+02

OH + HO2 = H20+02

HO, + 0 = O, + OH

2 2

Peters' H24Air Kinetics

B
2.2(13)
2.2(14)
1.8(10)
6.3(12)
6.4(17)

5. (16)***
1.5(15)
2.5(14)
2.5(13)
1.5(13) %=+

6.3 (13)

Values listed are for argon as third body.
Values listed are for helium or argon as tnird body.
Value of Petersen § Kretschmer at 300°K; for M = O

**%+ Appears estimated based on Leeds values.

=

o O

1.0

0

0

2

|0

-2590
-8 150
-4480

-550

+550
=950

-350

-350

Ref.
A,p77
A,p9
A,p49
A,pll9
A
A,p299
A,p4ll
LA
A,p377
A,pl45s
A,pl6l1
A,p251

B,pl73

A - Evaluated Kinetic Data For High Temperature Reactions by D.L. Baulch,

D.D. Drysdale, D.G. Horne, A.C.L. Lloyd, Vol. I, CRC Press, Cleveland, 1972.

B - Evaluated Kinetic Data for High Temperature Reactions, by D.L. Baulch,
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Table 2. The HZIOZ/NZ Kinetic Scheme of Dixon-Lewis

# Reaction B n c
1 OH + H, = H 0 1.17(9) 1.3 -1825
2 H+ 0, = OHsO 1.42(14) 0.0 -8250
3 O + Hy = OHeH 1.8 (10) 1.0 -4480
C

4 HeO,+H, = HO,+H, 1.03(18) -0.72 0.0
5 HeHO, = OH+OH 1.4(14) 0.0 - 540
6 HYHO, = O+H,0 1.0013) 0.0 - 540
7 HeHO, = Hy00, 1.25(13) 0.0 0.0
8 OH+HO, = H,040, 7.5(12) 0.0 0.0
9 0+HO, = 0H+oza 1.4(13) 0.0 - 540
10 0+HO, = ou+oéa 1.25(12) 0.0 0.0
11 HetieH, = H,+H, 9.2(16) -0.6 0.0
12 HeHN, = HysN, 1.0(18) -1.0 . 0.0
13 HeH+0, = H 40, 1.0(18) -1.0 0.0
14 HYHeH,0 = Ho+H,0 6.0(19) -1.25 0.0
15 HeOHM = H20+Mb 1.6(22) -2.0 0.0
16 H+O+M = OH+M 6.2(16) -0.6 0.0
17 OH+OH = 0 + H,0 5.75(12) 0.0 - 390

&Dixon-Lewis defines the rate coefficient for O + H02 = OH + 02 as k

b . -
Value for M=H2,N2 or 02, X5 for M-Hzo.

[ .
Chaperon efficiencies relative to H, = 1.0 are 0.44, 0.35
for NZ’ 02 and l{20, respectively. 2 44, 0.35 and 6.5

16
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Sgecies
H
OH

Table 4. Heat Capacity and Specific Heat at 2000K.

Cp(callmole-K)

J -
fp( oule/gm~-K)

4,968
8.275
4.976
12.906
8.173
9.045

12,199

8.609

20.79
1.923
1.301
1.636

17.10
1.183
2.8356

1.286




TRANSPORT

Individual Species

There are two classes of transport parameters;\;, the heat capacity of
the ith igecies,and Djj, the binary diffusion coefficient. We consider them
in turn.

The theoretical expression describing the thermal conductivity of hard
sphere (i.e., atomic species) is simply related to the viscosity; specifically,

AMi/ng = 15R/4, Q17)

To account for the fact that energy storage in a polyatomic molecule can take
place through modes other than translational we have examined the Eucken and
modified Eucken correlations. In general form,

AMi/ng = £.Cr * FineCine,i ' (18)

where fry is set equal to 5/2 so that this expression reduces to the monatomic
case (i.e. when fj,¢ = 0, there Cip = 3/2R). Cjje j is taken to be Cy j-Cer and
there remains the evaluation of fj .. Eucken set flnt to unity. Others have
suggested that the flow of 1nterna1 energy is a type of diffusional transport
and have found that fijnt = (Sc)' » where the Schmidt number, Sc, is n/pDg. D
the self diffusion coefficient, = 1.20 pna(2,2)/q(1,1) (here the ideal gas
has been assumed). Since the ratio of collision integrals is approxlmately
1.1 and is almost independent of temperature, we find (Sc)-l = 1.32. This
value (fijnt = 1.32) leads us to the modified Eucken correlation.

S

Usually experimental values of A; for non-polar gases lie between the
values calculated by the two Eucken forms and so we have elected to take the
arithmetic mean of the two forms.

The ensuing expression reduces to

n. C .
A = oL 1.20R + 2.32 “pi , (19)
i Mi 2

where we nave used the relation R = Cp-Cy C, can be computed from the
thermodynamic coefficients of Gordon and McBere6 Eq. 16b.

We see from Eq. 19 that to find the expression for Aj, we need to find the
expression for nj.

The viscosity of the ith species is given by:

,,i(gm-cm'ls’l) = 2.699 x 107° (M;T) / 2a(2s 2)( i) (20)

%

m-'v.p'& T

131me discussion follows that of Reid, R.C. and Shermwod, T.K., The Properties
Gases and Liquids , nd Ed. MoGraw-Hill, N.Y., 1966. Viscoeity Chap. 9,
rmal Conductivity, Chap. 10 and Diffusion Coefficiente, Chap. 11.
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* -
where T; = (e/k)i1 T. The Lennard-Jones (or Stockmayer, in the case of H0)
parameters are given in Table 5.

TABLE 5. LENNARD-JONES/STOCKMAYER PARAMETERS

g

Species (10~8cm) %4§T Remarks '

H 2.05 145 a
OH 2.947 127.2 like 0 g

0 2.947 127.2 b 1
HOZ 3.372 128.7 like 02

HZ 2.92 38.0 - a

02 3.372 128.7 b

HZO 2.60 572 a

N2 3.62 97.5 a

83. Warnatz "Calculation of the Structure of Laminar Flat Flames II: Flame
Velocity and Structure of Freely Propagating Hydrogen-Oxygen and Hydrogen
Air-Flames" Ber. Bunsengs Phys. Chem. 82, 643-649 (1978).

bJ.M. Heimerl and T.P. Coffee, "The Detailed Modeling of Premixed Laminar

Steady-State Flames. I Ozone." Combustion and Flame 39, 301-315 (1980).

In order to evaluate the collision integrals for polar molecules not only
is e/k required but also the dimensionless parameter

= 2 3
8 Hﬂzoé CHZO Uﬂzo). (21)

The dipole moment for H20, uy,0, is taken to be 1.844 Debye (1 Debye = 1013
dynef-cm?). This value agreeg with those reported by McCellanl4 (1.82) and-
NelsonlS et al. (1.85). With this value for Uyyo and the parameters from Table
4 we find § = 1,225,

14MbCeZlan, A.L., Tables of Experimental Dipole Moments, Freeman, San Francisco,
1963.

184e180m, R.D., Jn., Lide, D.R., Jr. and Maryott, A.A., NSRDS-WBS10, Sept. 1967.
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We have found it computationally efficient to use an analytic fit for
A, and n;. Values for these parameters were generated from equations (19) and
(10), respect1ve1y. The temperature range was 300 3000K and evaluations were
made at 100K intervals. The functional form ATB was then fitted to these data
in a least squares sense. The coefficients A and B for each species and the
‘ overall rms error of each fit is listed in Table 6. Table 7 lists the species

thermal conductivities at 2000K.
The binary diffusion coefficients13 are generated from the expression

3321, ) o) 1o, D r] ;)
(22)

pDij(cmzs'latmos'l) 1.858 x 10~

where T* (e/k) T. For non-polar, non-polar interactions the combining
laws are €5 = (e e ) (23)

and

= '}(0i +oj). (24

For polar, non-polar interactions we employ the modified combining laws:

Opp = (0 + 0) €776 (25)

and

- (oo (26)

e o

where
g=1+2% (ant*p/cns) [t:p/e:n]i (27)

and

-3 3
t*=28 €0 . 28
P up / °p (28)
We note in passing that 2§ = t *. To evaluate equation (27) we need to specify
the polar1zab111 g of the non-Bolar molecule, a_. For Hy, 05 and N, «, (in units
of 10-24 cm3) js! 0.79, 1.60 and 1.76, respictively.

The values of the Djj are computed at 100K intervals over the temperature
g range 300-3000K by means of Eq. (22) and, as the values for Aj, are fitted to
the convenient functional form ATB. The coefficients A and B and the overall
error of the fit (in an rms sense) are given in Table 8.

Some of these values can be checked against experimental data and other
Djj determinations. Table 9 shows values of Dj; computed from the parameters
listed in Table 8 and experimental data taken at 273K and one atmosphere pres-
sure. We find this agreement good to excellant. :

1080, 13, Table II-2, p. 529.
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TABLE 7. THERMAL CONDUCTIVITY AT 2000X.
(computed from Table 6)

A,

Species cal-c;'l-K:ls'l TW7%ET
H 2.6822 * 1073 1.122
OH a.847 +107% 0.2028
0 3.318 * 1074 0.1388
HO, 3.900 * 1074 0.1632
H, 1.712 * 1073 0.7163
o, 2.921 * 1074 0.1222
H,0 5.892 * 1074 0.2465
N, 2.687 * 1074 0.1124

Table 10 shows the expressions of Marrero and Mason17 for selected D. .,
also in the form ATB. Their expressions are based upon data (except for
HZ'NZ) and they rate the quality of their fits in the following order:

HZO - N2 + 4%

H0-02 + 7%

2

H-H2

H-Nz, O-Nz, 0-02 + 10%(300K); * 25%(>1000K).

H

5% (300°K); + 30% (>1000K)

The last column of Table 10 shows the comparison of their values with the
ones generated from the parameters listed in Table 8. This comparison is made
over the interval 300 <T< 3000K except where noted. Comparisons for the major
species are within 13% (rms). The 0-N2 and 0-02 show larger rms deviations
but their effects on flame speed and profiles is expected to be small.

%w, T.R. and Mason, E.A., J.Phya. Chem. Ref. Data 1, 3-118, 1972.
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Table 8. ANALYTIC FIT OF FORM AT® TO THE BINARY DIFFUSION COEFFICIENTS Di;
PDs; A B Error

_ i i (X10-4cmzs'1atm'1) %)

‘ H H 2.1700 1.6846 1.3
H OH 1.0997 1.6815 1.2
H 0 1.1016 1.6815 1.2 '
H HO, 0.91865 1.6818 1.2
H H, 1.6560 1.6649 0.4
H o, 0.91907 1.6818 1.2
H H0 0.6409 1.7525 2.7
H N, 0.90158 1.6758 0.9

OH OH 0.27234 1.6786 1.1
OH 0 0.27656 1.6786 1.1
OH HO, 0.20564 1.6788 1.1
OH H, 0.73760 1.6640 0.3
OH 0, 0.20673 1.6788 1.1
OH H,0 0.16361 1.7437 2.6
O N, 0.20894 . 1.6734 0.8
0 0.28072 1.6786 1.1
0 Ho, 0.20984 1.6788 1.1
0 H, 0.74002 1.664 0.3
o o, 0.21091 1.6788 1.1
0 HO 0.16622 1.7437 2.6
0 N, 0.21296 1.6734 0.8
HO, HO, 0.14846 1.6791 1.1
HO,  H, 0.62386 1.6641 0.3
HO, 0, 0.14961 1.6791 1.1
HO, H,0 0.12144 1.7445 2.6
24




PDi' A

i (x10™4cn?s ™!
H02 2 0.15364
H2 2 1.1299
HZ 2 0.62442
H2 H20 0.58694
H2 2 0.59990
02 2 0.15076
02 HZO 0.10965
02 2 0.15474
H20 H,0 0.026558
H0 N, 0.12198
N2 2 0.15678
Note:

The logaritimic weighting of these fits was taken into account. See
2.J. Cvetanovic and D.L. Singleton, Int., J. Chem. Kinet. 9, 481-488,

atm'l)

1977 and 9, 1007-1009, 1977.
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B

1.6736
1.6600
1.6641
1.6937
1.6627
1.6791
1.7585
1.6736
1.9523
1.7403

1.6700

Error

0.8

(%)

0.2
0.3
1.7

0.3

1.1 1
2.8
0.8
3.1
2.5

0.6 {




TABLE 9. COMPARISON OF THE VALUES OF SELECTED Dij FROM TABLE 8 COMPUTED AT

*D

exp

1 atmos. and 273K WITH EXPERIMENTAL DATA

Species pair ATB _exp
H, - N2 0.674 0.674
H2 - HZO 0.784 0.759
0, - H,0 0.211 0.214
H, - 0, 0.750 0.701
N, - HZO 0.212 0.212
N2 -0, 0.185 0.181
H - H, 1.88 1.86
o - 02 0.259 0.281
H - N2 1.09 0.945
0 - N, 0.254 0281
H, - H2 1.25 1.26
02 -0, 0.186 0.184
N, - N, 0.184 0.180

(T = 273, p = 1 atmos) from: iWarnatz, J.

Ber Bunsenges. Phys Chem 82 643-649, 1978, Table 2.
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TABLE 10. COMPARISON OF SELECTED D, ; WITH THOSE OF MARRERO AND MasoN'’

Temperature Comparison With

105A(atmo-cgil Range (K) Values from Tabla 8
. H, 0, 4.17 1.732 252-10% 9.8%
N, 0, 1.13 1.724 285-10% 6.0%
N, HO 0.187 2.072 282-373 1.7% (300K only)
0.189 2.072 282-450 12.9% (300-500)
0, HO
2.78 1.632 450-1070 10.6% (500-1100)
H H, 11.3 1.728 190-10° 8.5%
0 N, 1.32 1.774 280-10° 25.7%
0 o, 1.32 1.774 280-10" 22.8%
H, N, * * 65-10" 12.2%
*gn(pD. . ) = in A + s 2T - gn[in(é _/KT)1%-(8/T) - (5°/T9)
H2N2 o
E where
10°A = 15.39 atmos-cmz[s(l()s]'1

[ 1.548
-8
10 ¢o/k = 0.316

S=-2.80

S' = 1067.




The LJ parameters for Dy

-N2 were determined from the empirical combining
rules Eqs. (23) and (24) for f

17
2 and N2.

Table 11 shows the results of comparisons of the viscosity and thermal
conductivity as comYuted from the parameters on Table 6 and the data listed
by Touloukian et all8,19, The large deviation for Ay o Suggests that a fit
could be made to the data themselves, 2

TABLE 11. COMPARISON OF THERMAL CONDUCTIVITY AND VISCOSITY WITH DATA OF
Touloukian et al, 18,19

Temperature Temperature
Species A deviations Range (K) n_deviations Range (K)
H2 + 4.7% 300-2000 4.90 300-2000
N2 - 3.6% 300-3000 1.34 300-2000
O2 +1.1% 300-1500 3.03 300-2000
i H20 - 29.8% 300-900 4.13 300-1000

3 + = data > computation

Multispecies Transport

Once the A; and D;; are determined, as above, there remains to assemble
the thermal conéuctivit§ of the mixture and decide how to handle the multi-
species diffusion.

Although some rather involved formulations are available in the literature18
to determine Apjx» we have found20 that the values from these expressions differ
little from the expression
s -1
: Amix = 0.5 {Ei XiAi + (§ xi/xi) 1. (29)
For the diffusion transport parame'.‘.ers21 we employ a generalization of
Fick's Law, namely
& 18Tbuloukian, Y.S., Liley, P.E. and Saxena, S.C., Thermal Conductivity (non- 1
‘ metallie Liquids and Gases), IFI/Plenum, N.Y., 1970.
19Touloukian, Y.S., Saxena, S.C. and Hestermans, P. Viscosity. IFI/Plemum, N.Y., .
1975.

ZOCofTbe, T.P. and Heimerl, J.M., Combustion and Flame 43, 273-289 (1981) and BRL
Tech. Report ARBRL-TR-02302, Mar. 81. 1

21This ie the go-called Method V considered in Ref. 20. Method VI ie constidered
in the Appendix.
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YiVi = - Dy (Y9, (30)
where
- —1 -
Dim = (l'xi)(zj#ixi/Dij) . : (31)
20

: Again we have found™" little difference in the computed flame speeds, species

3 profiles or temperature profiles using this generalized Fick's law vs. more
complex formulations that solve for the diffusion velocity (such as the Stefan-
Maxwell equations do).

We have further noted that in the Lennard-Jones formalism

o k5,0 (1,1)
=T /8 : (32)

q(1,1) , 1-0.17

Now and since p « ! we see that pZDij is nearly

independent of temperature. Generalizing we assume that p2D. is constant.

Likewise for a monatomic gas A« Tilﬂ(z’z), where 9(2’2) « _-0.16. It is thus
reasonable to assume that pA is independent of temperature.

We now outline a procedure that permits an a priori selection of these
quantities.

For a given flame we know Ty and Yjy, the temperature and the mass fraction
of the unburnt mixture. We also know the kinetic scheme, the specific heats
and the specific enthalpies. Since enthalpy is conserved, i.e.,

(33)

3 we can compute the adiabatic flame temperature Tg, as well as the mass fractions
of the burnt mixture, Yjg. The numerical procedure is to guess a

trial temperature T, and, using an ODE package, find the corresponding equili-
brium mass fractions Yjt+. We then compute the enthalpy of the burnt mixture

and compare with the unburnt mixture enthalpy. Tt is iteratively adjusted

until the burned and unburned mixture enthalpies agree to within a predeter- !
mined error tolerance. We then accept these values of Tt and YiB.

As a heuristic rule we select

T = O.S(TB - Tu) (34a)

and

Yi = 0.5 (YiB + Yiu) (34b)
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then evaluate Djp and Aj from Eqs. (31) and (29) respectively. Then pZDim,
i = 1,2...N-1 andpirj are evaluated. The diffusion velocity VN is found from
the constraint on the diffusive mass flux that

ZYiVi =0, (35)
At this level of approximation we find it convenient to employ a constant R
or global Cp. So we assume cpi' cp = constant for all i. Then the relation
o T
h, = h, +‘/; €pi 4T (36)
0
becomes
= Y -
hi = hi + cp(T To) and 37)

the mixture enthalpy is given by

_ o
T Yihi =L Yihi + cp(T-To). (38)

Substituting this expression into Eq. (33) we find

4 o

‘ L hi (Yiu - YiB)

c_ = T . (39)
P B 'u

The values used here are found in Table 12 and yield an average cp =
3.65 x 10-1 cal-mole-lK-1. We also find that p(T = 1344K) = 2.0364 x 10°%
gn cm-3, and that Tg = 2390K. This value compares well with the NASA-Lewis
value  of 2383K.

Table 13 shows the Dj, evaluated at T = 2000K as required for use in the
b workshop comparisons; the values at the mean temperature, T = 1344K, are in-
cluded for completeness.

Table 14 contains values of Aj and Djy, both at 1344K, used in the compu- ¢
tation of pz Dim and pAmix. The value of this density at 1344, given above,
was computed from p = p/(RTLYj/Mj); the mass fractions, Yj, are taken from
Table 12 (ie., Yj3344); and M\pjx is composed from Eq. (29). This equation re-
quires the species mole fractions and these are comguted from the standard
relation: Xj = (Yi/Mj}/(LYj/Mj). The values for P°Djy used in the flame
code are listed 1Y the las iumn of Table 14. The value found for Apix is
3.29 x 10 "ca}l-s § and fo the velue for pxmlx used in the flame code

is 6.70 x 107° gm- cal -cm©-s”




The workshop had requested values for A, ;. at 2000K. Table 15 contains
a listing of the values for Yj at 2000K taken ¥rom the flame code output. Alsc
listed are the values of the corresponding mole fractions. This informatior,
the values of Aj from Table 6 and Eq. (29) were used to complete \pix =
4.44 x 10-4 cal-s-1-x-1 (i.e.0.1857 W m-1Kk-1).

TABLE 12. PARAMETERS NEEDED TO DETERMINE DIFFUSION TRANSPORT PARAMETERS,
EQUATIONS (31) and (39)

(]

Yy Y Y1344 Rea1/gm)

H * 7.517(-5) 3.759(-5) 5.21(+4)

OH * 5.081(-3) 2.541(-3) 5.58(+2)

0 * 4.059(-4) 2.030(-4) 3.72(+3)

HO, * 9.475(-7) 4.738(-7) 1.51(+2)

H, 2.830(-2) 1.212(-3) 1.476(-2) -1.60(-1)

0, 2.264(-1) 7.504(-3) 1.170(-1) -3.57(-2)

H,0 * 2.404(-1) 1.202(-1) -2.21(+3)

N, 7.4528(-1) 7.453(-1) 7.453(-1) -3.95(-2)
T(°K) 298 2390 1344,

*Values are machine zero.
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TABLE 13. EVALUATION OF Dij AT T = 1344K and 2000K

Dij(T = 13447K)

1 2 1

cm-s
OH 20.03
0 20.07
HO2 16.77
H2 26.76
02 16.78
H20 19.87
Nj 15.76
0 4.93
HO2 3.67
H2 11.84
02 3.69
H20 4.66
N2 3.59
HO2 3.74
HZ 11.88
02 37.68
HZO 47.39
N2 36.59
HZ 10.02
02 2.68
HZO 3.48
N2 2.64
02 10.03
H20 11,67
N2 9.54
HZO 3.48
Nz 2,66
N2 ' 3.39

32

D..(T = 2000K)
1)

cn’-s!
39.08
39.15
32.72
51.87
32.74
39.87
30.68
9.61
7.16
22.95
7.20
9.33
6.98
7.31
23,02
7.34
9.48
7.11
19.42
5.22
6.97
5.14
19.44
22.88
18.48
6.70
5.18
6.78
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———

x10°

7

gu’-ca”
7.30
1.76
1.79
1.31
4.12
1.33
1.64

1.78

—
TABLE 14. THE TRANSPORT PARAMETERS AT THE MEAN TEMPERATURES, T=1344K
Sgecies xi Din
X1 0'4cav,1-s:r-c-'t'I cnlz s}
H 20.52 17.61
OH 3.57 4,24
0 2.56 4,32
Hoz 2.78 3.15
HZ 12.67 9.93
02 2.14 3.21
H20 3.69 3.95
N2 1.98 4,30
TABLE 15. FLAME CODE VALUES OF Yi AND Xi AT T=2000K
Species i fi f_i_._
H 1 7.79(-4) 1.84(-2)
OH 17 1.00(-2) 1.39(-2)
0 16 3.54(-3) 5.22(-3)
HO2 33 9.37(-6) 6.70(-6)
H, 2 3.08(-3) 3.63(-2)
02 32 2.38(-2) 1.76(-2)
HZO 18 2.14(-1) 2.81(-1)
g NZ 28 7.45(-1) 6.28(-~1)
!
33
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V. Results and Discussion

The results requested in the B problem are the flame velocity and the
maximum values of the mass fraction profiles of H, 0, OH, and HO, and the
maximum and minimum values of the enthalpy. The mixture enthalpy profile is
computed from the other known functions. Specifically,

N

hpix = % Yihy (40)
i=1

which for transport method § with constant cp reduces to ¢
N

- o -
hmix = §=1 Yihi + cp(T To)' (41) .

Since the functions Yi(x) and T(x) are known hmix(x) can be generated.

The flame speeds are shown in Table 16. The first column contains the
values predicted by the code using the nominal values of ys5,e and NINT.
The second column shows the values predicted when the burned end numerical
boundary YR, the temporal error criterion, ¢, and the number of breakpoints
NINT are simultaneously changed. The third column shows the flame speed pre-
dictions from the same code and input parameters except that the kinetics of
Dixon-Lewis9 are used.

Since our grid7 adapts to the temperature profile, the flame speed from
this profile is the most accurate. All other determinations agree within 5%
except the HOp profile. The reason for this exception is that the interval of
integration is taken from the cold boundary to approximately the mid-point of
y-space (see Eq. (9)). The HO; profile (see Fig. 1) is a sharp ''spike" that
occurs within the integration interval and so the flame speed determination is
expected to be grossly in error. This has been checked by raising NCN from six
to twelve and simultaneously lowering y5 to 2.0. The former extends the region
of detail about the inflection of the temperature profile and the latter de-
creases the spatial resolution. In this case the flame velocity predicted for
the HOp profile was 150 cm-s-1 showing the expected trend. In addition the
flame speed predicted for the OH profile was 197 cm-s-1 and all other determi-
nations changed by 3 units or less.

All these results are,in good agreement with the computed flame velocity
of 200 cm-s-1 (Dixon-Lewis” his figure 40). The corresponding measurements~ show
relatively wide scatter; i.e., 187-280 cm-s-1.

Since the numerical range of ¥ space is finite, we need to check the
adequacy of our selection of the value of this numerical boundary. If this
range is too small, mass or heat or both will "leak'" out.

The mass and heat flux fractions are defined

_ -1
e = Yy * oYy Vy (pu)
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TABLE 16. COMPUTED FLAME SPEEDS

Flame® 'Flameb Flame®
{ Variable Velocity Velocity Velocity
cm-s~! cm-s! cm-s™~1
Temp 200 200 217
H 199 200 6
OH 196 190 214
0 195 197 2.
HO2 -1300 -229 121
HZ 199 200 216
02 199 199 216
HZO 199 199 216
N2 197 198 216
%y = 2.9, € = 3x10™°, NINT = 24, NCN = 6, FC = 6.
b -5
¥ = 3.3, € = 107>, NINT = 30, NCN = 6, FC = 6 (check)
i
°Dixon-Lewis Kinetics® ¥ = 0.8, € = 3x107*, NINT = 16, NCN = 6, FC = 8.0.
]
and
e=T +A(M_ ¢ -1 (pu)-1 (43)
u X p ’

respectively. Since VK is always related to the derivative (Yg)yx and in the
Fick's law case, considered here, (42) can be written

eK = YK - pDim(YK)x (Du)-l . (44)

We see that if the derivatives (Yg)y = (T)x = O at the cold boundary then the
flux fraction should equal the originally assigned values of Yyg and T,. We

find the derivatives to be all < 10-7 and that the values of the flux fractions
are identical to the cold boundary values to at least five significant figures.
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Table 17 shows the requested peaks for the Peters B problem. These are
determined from the output routines which typically contain ~ 200 data points
per profile. These in turn have been generated from the 40 collocation points
and the known coefficients of the B-spline functions.

Mass fraction profiles of the minor (OH, O, H and HO2) and major (H;, Oy,
H20 and N3) species can be found in figures 1 and 2, respectively. Figure 3
shows the profiles of temperature and enthalpy. The most interesting of these
profiles are those of HO2 and OH. The fact that the HO; peak lies close to the
smaller OH peak suggests that they may be related. Let us first examine what
is happening to form the HO, peak.

TABLE 17. PEAK VALUES OF RADICALS AND EXTREMA OF ENTHALPY

i Zi_u_ﬂ Location (mm) Temp (K)
H 2.6740E-3 1.0935 1353.8
OH 1.0012E-2 2.4838 1968.6
0 7.5460E-3 1.1399 1408.9
HO, 7.9263E-4 0.78185 369.0
max enthalpy 8.7725E+1* 0.90429 916.9
min enthalpy -2.2690E+1* 1.2143 1479.5

*units of cal/gm.

The only source of HO2 in this region is the reaction

H+O0,+M>HO, + M. (R7)

H is'transported toward the cold boundary by diffusion and, before the flame
front, 0z is in abundant supply. So HO, builds up to the Ho, peak near 0.76 mm

until the reactions

HO2 + H -+ 20H (R8)
HO2 + H~» H2 + 02 (R9)
and
HO2 + OH » HZO + 02 (R10)
37
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are significant and together dominate the HO2 loss. (Small but non-negligible
losses to the HOp concentration also occur through diffusion and conduction.)
The temperature rises sufficiently till the rate of these HO2 loss mechanisms
exceed the rate of HO, production and YHO is observed to fall.
2
The smaller OH peak (near 0,8 mm) is caused by the following mechanism.

The major source of OH is reaction 8 (which also depletes HOZ); the major
OH sink is

Hy + OH > H,0 + H, (R1)

2
but the OH profile tends to track the HO2 profile except that near 0.9 mm the
chain branching reactions

02 + H> 0 + OH (R2)

H, + 0> H+ OH (R3)

become important. With increasing temperature the OH builds up again. The
gap in the Ygy profile is the location where OH is tracking HO2 and reactions
(R2) and (R3) do not have significant influence.

In Figure 4 we see a plot of XN, vs. distance. The rise needs to be
understood because N2 is a non-reacting diluent and the corresponding Yy, plot
is flat (see Fig. 2). As we shall now show, this behavior can be accoun%ed
for in the Y to X transformation.

Given that Y;(A) = Y;(B) = ..., where A,B,... are spatial locations, we
ask what is the relationship between say, Xi(A) and Xi(B). In general

X;(A) = (Y;(A)/M)/(2 Yj(A)/Mj)- (45)

Then

X; (B) = (Y; (B)/M;)/ (% Y, (B)/M;) (46)

(Y (A)/M})/ (5 Y, (B)/M,)

We require an expression for the denominator of (46) in terms of location A.
Since

z YJ.(B)/Mj = j:i YJ.(B)/Mj + Yi(B)/Mi

and

LY /M = jii Y (/M Y (/M

40
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We can equate Yi(B) and Yi(A) to find that

. = (B)-Y. M. . M.
b YJ(B)/MJ jii(YJ( ) 3 (n))/ j + 1 YJ(A)NJ 47)

Substituting (47) into (44) and using (45) we find that

Xi(A)/Xi(B) =1+a, (48)

where o = I ((Y,(B)-Y.(A))/M.)/(Z Y (A)/M,).
TR j j j j

Note that if a << 1 then X, (A) = X, (B); if a > 0 then X, (A) 5 X, (B). These last
inequalities allow the poSsibility that a flat Yi profile could be transformed
into an Xi profile that is quite different in shape.

As a check, we take the Y;'s from the code output and compute & (see Eq.
44), for a selected number of collocation points 16 through 21 corresponding
to 0.7 mm to 0.8 mm. We use a point in the flat portion of the curve, location
10 (~ 0.52 mm) as the fiducial or reference point, A. From the code output we
can also compute Xi(A)/X.(B) - 1. If nothing but the transformation were in-
volved these values would be identical. Table 18 shows these values. As can
be seen the values are quite close; the differences are attributed to transport
processes and numerical '"slop". N-1

(Recall that YN is computed from 1-% Yi.)
2 i

Figure 5 shows Y02 as a function of distance and the expected monatomic

decrease. However Figure 6 shows X5, and a sensible "bump" appears right before
the steep slope. Reference to Table 18 shows that at locations 16 & 17 the
trend is similar to the Yy,. However for the higher locations the actual curve,
G, departs from the one that only takes into account the Y+X transformation, F.
In other words some other process is occurring besides the simple transformation.
Examination of the output shows that 07 diffusion is the major influence on

the profile. That reactions play a negligible part in explaining the Y02 "bump"'
is consistent with the low temperatures in this region (<500K}.

VI. SUMMARY g

Besides the requested information we have found several interesting profiles,
whose bumps and wiggles could have been attributed to numerical artifacts, but .
upon closer examination proved to be real for this flame and its input parameters.

In addition, we provide a set of nonkinetic input parameters for this
stoichiometeric hydrogen-air flame and compare these values against known
experimental determinations. Finally, we show in the Appendix that the multi-
species transport algorithm is not important unless one is considering radical
profile accuracies of ~20% or less. We also show that the major differences
between the two algorithms employed can be attributed to the effects of thermal
diffusion.
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Location

-B

TABLE 18. VALUES OF Y=X TRANSFORMATION AT SPECIFIC LOCATIONS

16
17
18
19
20

21

F(NZ,B,IO)

o ——————

-1.80(-3)
-4.10(-3)
-6.99(-3)
-1.28(-2)
-1.83(-2)

-2.68(-2)

F(i,B,A) = _i‘ ((Yj(B) - Yj(A)/Mj)/(2 Yj(A)/Mj)

G(i,B,A) = (X;(A)/X;(B)) - 1

G(N2,8,10) F(OZ,B,IO) '6(02,3,10)
~1.90(-3) -1.66(-3) -1.62(-3)
-4.30(-3) -3.77(-3) -3.30(-3)
~7.79(-3) -6.36(-3) -4.78(-3)
-1.31(-2) -1.12(-2) -3.91(-3)
-1.85(-2) -1.14(-2) +3.73(-3)
-2.69(-2) -1.84(-2) +3.05(-3)
45
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APPENDIX A
Comparison of Results Using Transport Method 6.

In the main body of the text we have employed a mixing algorithm which is
based upon Equations (29), (30) and (39). This method, our so-called method
5,20 consists of a simple definition for Amix» Eq. (29), and a generalization
of Fiek's Law plus the selection of constants for p¢ Djp, pA and ¢,. In order
to check the effects of this rather simple mixing algorithm we employed our
so-called method 6. This method also used Eq. (29) as the definition of Apjx
but accounts for the diffusion velocity by solving a modified form of the
Stefan-Maxwell equations. In this method the transport coefficients are
temperature dependent. This method also crudely accounts for thermal diffusion.
We have assumed that only H and Hz have non-zero thermal diffusion coefficients.
Futher details are given in Ref. 20. All other parameters remain the same.

Table A-1 shows the computed flame speed for both the '"Peters B" kinetic
listed in Table 1 and the Dixon-Lewis kinetics listed in Table 2. These values
are about 4% greater than those in Table 16. The exceptions are for HO» whose
difficulties we have discussed above and for N3. The YN, are practically
straight lines of constant value and so the use of Eq. (5) to obtain flame
speeds will not in general be reliable.

Figures A-1 and A-2 show the minor (H4,0H,0 and HO2) and the major (H2,02
Hp0 and N3) species profiles respectively. Figure A-3 shows the temperature
and enthalpy profiles for transport method 6. Qualitatively there is little
difference between these profiles and the corresponding ones of method 5,
Figures 1,2, and 3 of the text. Figure A-4 shows three plots of the enthalpy,
the function with the greatest observed difference. The solid line is the
enthalpy computed using transport method 5, the dotted lines is method 6 and
the dash-dot line is method 6 with the thermal diffusion set equal to zero.
As can be seen almost all the difference between method 5 and method 6 can be
attributed to the effects of thermal diffusion.

We add in passing that for transport method 6 with DT = 0 the temperature
and major species 07, H0 and Nszractically overlaid the corresponding plots
of both method 5 and method 6 (D! # 0). For H, method 6 showed Yy, to decline
at smaller values of x while methods 5 and 6 (BT = 0) nearly overlapped.

The minor species profiles differences are characterized by the Y;j peak
values as shown in Table A-2. At the peak and in the post-flame region the
values for the minor species computed using method 6(D'=0) were larger than the
values computed using method 6(D! # 0) and these in turn were larger than the
values computed using method 5.

The flaTe speed computed from the temperature profile for method 6(DT = 0)
was 230 cms~*. This is about 12% greater than the results of method 6(DT # 0).
Wamnatz's22 computations are for a 45% Hy in air premixed flame, Tn this case he
finds that setting DT = 0 raises the flame speed by ~ 5%.

22

Warmata, J. Ber. Bunsenges. Phys. Chem. 82, 643-649, (1978).




Variable

Temp.
H

OH

a) ¥ =29, ¢= 3x10™°, NINT

b) Dixon-Lewis Kineticsgz ws

TABLE A-1.

COMPUTED FLAME SPEEDS METHOD VI
Flame? Flameb
Velocity Velocity

208 cm/s 215cm/s
207 221

193 222

203 221
-150 -3638
207 215

207 215

207 215

205 154

= 24, NCN = 6, FC = 6.
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TABLE A-2.

SEecies

H

enthalpy*

enthalpy*

* units of cal/gm

Function

Yi(max)
Temp. (K)
location (mm)

Y; (max)

Temp (K)
location(mm)

Y; (max)
Tewp. (K)
location (mm)

Yi(max)
Temp. (K)
location(mm)

maximum

Temp. (K)
location (mm)

minimum
Temp. (K)
location (mm)

Method §

-2.

.6740E-3

1353.8

.0935

.0012E-2

1968.6

.4838

.5460E-3

1408.9

.1399

.9263E-4

369.0

.78185

.7725E+1

916.9

.80429

2690E+1
1479.5

.2143

53

Method 6

2.6852E-3
1369.3
1.1051
1.0356E-2
1973.0
2.4878
7.8953E-3
1427.7
1.1567
6.6590E-4
382.2
0.76351

6.6526E+1
901.8
0.89672

-3.2441E+1
1469.3
1.2005

COMPARISON OF RADICAL PEAK HEIGHTS AND ENTHALPY EXTREMA FOR
TWO TRANSPORT ALGORITHMS.

Method 6(D'=0)

2.8494E-3
1364.6
1.1049
1.0409E-2
1965.8
2.5436
7.9758E-3

1499.1
1.2452

7.0769E-4

377.2
0.75791

8.1928E+1
928.5
0.90314

-2.3675E+1
1484.7
1.2269
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GLOSSARY

heat capacity at coustant pressure, cal-mole l-k™1

cpiYi’ the specific heat of the mixture, cal-gm'l—K°1
-1

specific heat of ith species, cal-gm'l-K

binary diffusion coefficients for species k and j, cmz-s“1

enthalpy, cal-mole” !

specific enthalpy, cal-gm_1
Boltzmann's constant, = 1.3306 erg - k!

rate coefficient for the ith reaction, in centimeter-mole-seconds
units

number of species

molecular weight of ith species, grn-mole-1

-2 -1
mass flux, gm-cm ~-s

total pressure, atmosphere

1,-1

Gas constant, = 1.9872 cal-mole K 1

, = 82.05 cms-atmos-mole' -K

Rate of production of ith species by chemical reactions, mole-cm'3

burning velocity, em-s ™t
temperature,K
temperature of burned mixture, K.
T(e, /K) !
i
temperature of unburned mixture, K
temporal coordinate, s
fluid velocity, cmes™!
diffusion velocity of ith species, cm-s ™!
spatial coordinate, cm

mole fraction of ith species

mass fraction of ith species

-1

-5

-1

e




GLOSSARY ‘cont.)

mass fraction of ith species in the burned mixture.
= mass fraction of ith species in the unburned mixture.

si/k= L-J or Stockmayer parameZer, K

n; = viscosity of ith :necies, gm-s'l-cm'1

A = mixture conductivity, cal-cm™ -5~ 1 k1

A; = conductivity of ith species, cal-cm™l-s71x7}

o, = L-J or Stockmayer parameter, 10'8cm (= X)

p = fluid density, gm-cm's

y = transformation coordinate (see equation 5), gm-cm'2
91’2,92’2 = collision integrals (tabulated in reference 1)
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